Mechanical Behavior Laboratory University of Nevada, Reno

Paper Abstract

[J73] Weng, L., Zhang, J., Kalnaus, S., Feng, M., and Jiang, Y., 2013, "Corrosion Fatigue Crack Growth of AISI 4340 Steel" International Journal of Fatigue, Vol.48, pp.156-164. doi: 10.1016/j.ijfatigue.2012.10.015

Back to Publications

Abstract73

[J73] Weng, L., Zhang, J., Kalnaus, S., Feng, M., and Jiang, Y., 2013, "Corrosion Fatigue Crack Growth of AISI 4340 Steel" International Journal of Fatigue, Vol.48, pp.156-164

Paper Figures

Fig. 2

Fig. 2. Crack growth rates versus ΔK in air, distilled water, and 3.5 pct NaCl aqueous solution (Download data).

Fig. 3

Fig. 3. R ratio effect on ΔKth in dry air (Download data).

Fig. 4

Fig. 4. Crack growth rate versus ΔKeff at different stress ratios and loading frequencies in dry air (Download data).

Fig. 5

Fig. 5. Experimental SCC results in distilled water and fitting curve (experimental results from [17]) (Download data).

Fig. 6

Fig. 6. Predictions and experimental CFCG rates in distilled water (Download data).

Fig. 7

Fig. 7. Comparison of experiment CFCG rates and predictions in 3.5 pct NaCl aqueous solution (Download data).

Fig. 8

Fig. 8. Experimental CFCG rates of AISI 4340 steel tempered at 500°F in distilled water [21] and model predictions (Download data).

Fig. 9

Fig. 9. Comparison of (da/dN)Air, (da/dN)SCC and (da/dN)CF, and predictions by three models (Download data).

Fig. 10

Fig. 10. Experimental results of (da/dN)Air, (da/dN)SCC and (da/dN)CF, and CFCG rate predictions by using three models.(Download data).

Top